genus musicum (XXIII.)
genus musicum (XXIII.) | exponens 2m·33·52·7 |
Graphische logarithmische Darstellung der Tongeschlechter (XXI.), (XXII.) und (XXIII.):
Im Kapitel über "verschiedene Kommata und Intervalle" auf dieser Homepage habe ich beschrieben, wie die Intervalle 3 (3/2), 5 (5/4) und 7 (7/4) durch 31, 17, bzw. 43 Holder-Kommata (21/53) angenähert werden können. Für alle Töne der oben beschriebenen Tongeschlechter ergeben sich daher - übertragen auf die Grundoktav - folgende Annäherungen durch Holder-Kommata:
· | 30 | 31 | 32 | 33 |
50 | 0 | 31 | 9 | 40 |
51 | 17 | 48 | 26 | 4 |
52 | 34 | 12 | 43 | 21 |
· | 34 | 35 | 36 | 37 |
50 | 18 | 49 | 27 | 5 |
51 | 35 | 13 | 44 | 22 |
52 | 52 | 30 | 8 | 39 |
· | 30 | 31 | 32 | 33 |
53 | 51 | 29 | 7 | 38 |
54 | 15 | 46 | 24 | 2 |
55 | 32 | 10 | 41 | 19 |
· | 30 | 31 | 32 | 33 |
50·7 | 43 | 21 | 52 | 30 |
51·7 | 7 | 38 | 16 | 47 |
52·7 | 24 | 2 | 33 | 11 |
Konsonanzen
Aus den 12 species von Konsonanzen des "genus diatonico-chromaticum" können in diesem Tongeschleecht noch zusätzliche 12 durch Multiplikation mit dem Faktor 7 gefunden werden:
species I* | 2m·7 | |
species II* | 2m·3·7 | |
species III* | 2m·5·7 | |
species IV* | 2m·32·7 | |
species V* | 2m·3·5·7 | |
species VI* | 2m·52·7 | |
species VII* | 2m·33·7 | |
species VIII* | 2m·32·5·7 | |
species IX* | 2m·3·52·7 | |
species X* | 2m·33·5·7 | |
species XI* | 2m·32·52·7 | |
species XII* | 2m·33·52·7 |
Für die oben aufgelisteten Konsonanzen ergeben sich folgende "Grade der Annehmlichkeit":
(GS(E) = (Summe aller Primteiler von E) – (Anzahl aller Primteiler von E) + 1)
gradus suavitatis | VII | VIII | IX | X | XI | XII | XIII | XIV | XV | XVI | XVII | XVIII | XIX | XX | XXI | XXII | XXIII |
species I* | 7 | 2·7 | 22·7 | ||||||||||||||
species II* | 3·7 | 2·3·7 | 22·3·7 | 23·3·7 | |||||||||||||
species III* | 5·7 | 2·5·7 | 22·5·7 | 23·5·7 | 24·5·7 | ||||||||||||
species IV* | 32·7 | 2·32·7 | 22·32·7 | 23·32·7 | 24·32·7 | ||||||||||||
species V* | 3·5·7 | 2·3·5·7 | 22·3·5·7 | 23·3·5·7 | 24·3·5·7 | ||||||||||||
species VI* | 52·7 | 2·52·7 | 22·52·7 | 23·52·7 | 24·52·7 | ||||||||||||
species VII* | 33·7 | 2·33·7 | 22·33·7 | 23·33·7 | 24·33·7 | ||||||||||||
speciesVIII* | 25·32·5 | 32·5·7 | 32·5·7 | 2·32·5·7 | 22·32·5·7 | 23·32·5·7 | 24·32·5·7 | ||||||||||
species IX* | 3·52·7 | 2·3·52·7 | 22·3·52·7 | 23·3·52·7 | |||||||||||||
species X* | 33·5 ·7 | 2·33·5·7 | 22·33·5·7 | 23·33·5·7 | |||||||||||||
species XI* | 32·52·7 | 2·32·52·7 | 22·32·52·7 | 22·33·52·7 | |||||||||||||
species XII* | 33·52·7 | 2·33·52 ·7 | 22·33·52·7 |
Ähnlich wie beim "genus diatonico-chromaticum" können wir diese Konsonanzen in zwei Fünfliniensystemen aufschreiben:
(Als untere Grenze nehmen wir hier das C, als obere das c'".)
• : die 12 Töne aus dem Geschlecht 2m·33·52
• : die 12 durch Multiplikation mit 7 erhaltenen zusätzlichen Töne
species I*
22·7 F=2 |
22·7 F= 22 |
species II*
2·3·7 F=1 |
22·3·7 F=2 |
22·3·7 F=22 |
species III*
2·5·7 F=1 |
2·5·7 F=2 |
22·5·7 F=2 |
22·5·7 F=22 |
species IV*
species V*
3·5·7 F=1 |
3·5·7 F=2 |
3·5·7 F=22 |
2·3·5·7 F=1 |
2·3·5·7 F=2 |
2·3·5·7 F=22 |
2·3·5·7 F=23 |
||||
22·3·5·7 F=1 |
22·3·5·7 F=2 |
22·3·5·7 F=22 |
22·3·5·7 F=23 |
22·3·5·7 F=24 |
23·3·5·7 F=1 |
23·3·5·7 F=2 |
23·3·5·7 F=22 |
23·3·5·7 F=23 |
23·3·5·7 F=24 |
species VI*
species VII*
species VIII*
|
32·5·7 F=2 |
32·5·7 F=22 |
32·5·7 F=23 |
32·5·7 F=24 |
2· 32·5·7 F=1 |
2· 32·5·7 F=2 |
2· 32·5·7 F=22 |
2· 32·5·7 F=23 |
2· 32·5·7 F=24 |
|
22·32·5·7 F=1 |
22·32·5·7 F=2 |
22·32·5·7 F=22 |
23·32·5·7 F=1 |
23·32·5·7 F=2 |
23·32·5·7 F=22 |
species IX*
3·52·7 F=1 |
3·52·7 F=2 |
3·52·7 F=23 |
2·3·52·7 F=1 |
2·3·52·7 F=2 |
2·3·52·7 F=22 |
2·3·52·7 F=23 |
|||
22·3·52·7 F=1 |
22·3·52·7 F=2 |
22·3·52·7 F=22 |
22·3·52·7 F=23 |
species X*
33·5·7 F=1 |
33·5·7 F=2 |
33·5·7 F=23 |
2·33·5·7 F=1 |
2·33·5·7 F=2 |
2·33·5·7 F=22 |
2·33·5·7 F=23 |
|||
22·33·5·7 F=1 |
22·33·5·7 F=2 |
22·33·5·7 F=22 |
23·33·5·7 F=1 |
23·33·5·7 F=2 |
23·33·5·7 F=22 |
species XI*
|
32·52·7 F=2 |
32·52·7 F=22 |
2·32·52·7 F=1 |
2·32·52·7 F=2 |
2·32·52·7 F=22 |
||
22·32·52·7 F=1 |
22·32·52·7 F=2 |
22·32·52·7 F=22 |
species XII*
33·52·7 F=2 |
33·52·7 F=22 |
2·33·52·7 F=1 |
2·33·52·7 F=2 |
2·33·52·7 F=22 |
|||
22·33·52·7 F=1 |
22·33·52·7 F=2 |
22·33·52·7 F=22 |